: 質量保存則
: 流体運動の記述法
: オイラー的記述
目次
考えている物理量をとする.これは,オイラー的記述では
と時間の関数となる.いま注目する流体粒子が時刻において位置にいたとし,微小時間後の時刻
にはその流体粒子は位置
にきているとする.したっがって,その間のの増分は,
である.よって,特定の流体粒子に注目したときのの時間変化の割合は,
となる.また,物理量は任意なので微分演算子として表せば,
|
(6.39) |
となる.
ここで,流体粒子の加速度は速度のラグランジュ微分として得られるので,
|
(6.40) |
である.が時間によらない(
)とき,流れは定常(steady)といわれる.(3.3)から流れが定常であっても,流体粒子が流れていく方向に速度場が変化していれば加速度はゼロでないことに注意が必要である.
Yuta
平成22年1月23日